
Optimizing Satellite Orbit Transfer Efficiency
Through Matrix Diagonalization

Athian Nugraha Muarajuang and 135231061,2

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40132, Indonesia
113523106@std.stei.itb.ac.id, 2athianbintang@gmail.com

Abstract—The purpose of this paper is to present
optimization techniques in transfer maneuvers by satellites
using matrix diagonalization to enhance maneuver planning
so that it is both efficient and precise. Eigenvalue
decomposition and state-space representation allows the
simplification of orbital dynamics for s for any
maneuvers needed during transition. Test results indicate
that the smaller values will be achieved by satellites
whose orbits have semi-major axes and inclinations similar
to one another, as in the case of the ISS group. This validates
the methodology in lower fuel costs and greater mission
durations. Limitations are found in computational
challenges for large constellations, with future directions for
research aimed at the introduction of real-time adjustments
and environmental inputs.

Keywords—Matrix Diagonalization, Satellite Orbit
Transfer, Optimization, Minimization

 I. INTRODUCTION

Satellite is crucial for various mission objectives. Some
are used for communication, some for navigation, weather
monitoring, science research and many more. These are
the reason why satellite orbit transfer is also crucial. they
play a role on the deployment, maintenance, and
operation of satellites by moving them from their initial
orbit to their destination orbit. This maneuver is essential
To make sure that satellites attain the proper altitude and
inclination required to carry out their intended functions
efficiently. For instance, communication satellites need to
be positioned in geostationary orbits to provide consistent
coverage, while Earth observation satellites are often
placed in polar orbits for better global monitoring.
Similarly, scientific missions may require specific orbits
to study certain regions of space or Earth. Orbit transfers
also help extend the lifespan of satellites by adjusting
their orbits when needed, ensuring they remain
operational for as long as possible. This process is a key
factor in achieving the success of satellite missions and
maximizing their benefits.

The success of moving satellites from one orbit to
another depends greatly on precise calculations and
improvements. Many factors, such as how much fuel is
used, time limits, and the changing conditions in space,
are important when planning these moves. One challenge
of this process is reducing the needed, which affects
how much fuel will be used. By optimizing these
transfers, a mission can achieve reduced costs and

extended life of the satellite.
New advances in computer methods have greatly

improved our ability to optimize satellite orbit transfers.
Methods like matrix diagonalization and state-space
representation of linear systems help to model and
simulate orbital moves more efficiently. For example, the
Clohessy-Wiltshire equations helped make exact
calculations of relative motion in nearly circular orbits,
which increased the accuracy of where satellites are
located. Those mathematical techniques not only simplify
the understanding of complex orbital motions but also
open up possibilities for cooperation and multiple
launches.

This paper applies matrix diagonalization to satellite
orbit transfers in order to optimize performance. It shows
how this can simplify dynamic systems and improve
computational efficiency. With the use of eigenvalues and
eigenvectors, it demonstrates that state-space models can
achieve accurate satellite motion prediction and
computation of minimum required velocity changes for a
desired transfer. This approach is thus developing an
avenue for low-cost and reliable satellite operations. This
is very important in both commercial and scientific
missions, where accuracy and efficiency are at large stake.

 II. THEORETICAL FOUNDATION

 A. Eigenvalues and Eigenvectors
the word “Eigen”, originated from German, meaning

“own” or “characteristic”. It describes the own values,
(Eigenvalues) and own vectors (Eigenvectors) of a matrix
that doesn’t change direction after transformation, only
scaling by some factor. For an matrix , there is𝑛 × 𝑛 𝐴
an eigenvalue of matrix which can be real or complex𝐴
scalar () such thatλ

𝐴𝑥 = λ𝑥
for some nonzero vector . The equation is called𝑥 ∈ 𝑅𝑛

the eigenvalue equation and the vector in the equation is𝑥
called eigenvector of corresponding to .𝐴 λ

 B. Characteristic Equation
Based on the eigenvalue equation, eigenvalues and

eigenvectors can be solved with this equation:
λ𝐼 − 𝐴()𝑥 = 0

is a trivial solution of the equation.𝑥 = 0

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

mailto:113523106@std.stei.itb.ac.id
mailto:2athianbintang@gmail.com
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20v#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20v#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20v#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20v#0

To make it so that and is a nonzeroλ𝐼 − 𝐴()𝑥 = 0 𝑥
vector, this has solutions if and only if is a solution ofλ
the characteristic equation:

𝑑𝑒𝑡 λ𝐼 − 𝐴() = 0
the roots of the equation, , are called characteristic rootsλ
or eigenvalues.

 C. Matrix Diagonalization
Diagonal matrix is an matrix that consists zero𝑛 × 𝑛

elements all above and below the main diagonal.

Fig. 1 Example of diagonal matrix
source:

https://statlect.com/matrix-algebra/diagonal-matrix

The process of transforming an matrix into a𝑛 × 𝑛
diagonal matrix that has the same basic characteristics as
the original matrix is known as matrix diagonalization.
The process of diagonalizing a matrix is the same as
determining its eigenvalues, which are the diagonalized
matrix's exact elements. Likewise, the new set of axes that
correspond to the diagonal matrix is composed of the
eigenvectors. A square matrix of A can be diagonalized if
there is a matrix P so that is a diagonal matrix. In𝑃−1𝐴𝑃
this case, P can diagonalize matrix A, where P is a matrix
consists of the eigenvectors of matrix A, and is the𝑃−1

matrix inverse of P. With that in mind, a square matrix A
can be decomposed:

𝐴 = 𝑃𝐷𝑃−1

where D is a diagonal matrix constructed from
eigenvalues of matrix A.

 D. State-Space Representation of Linear Systems
1) State-Space Formulation

The state-space formulation is a mathematical
description of physical systems, specifically
dynamic systems, employing matrices. This method
is particularly beneficial for systems with multiple
inputs and outputs (MIMO). The standard
representation of the state-space model is
characterized by

�̇� 𝑡() = 𝐴𝑋 𝑡() + 𝐵𝑈 𝑡()
Where:
● : State vector, representing the insternal𝑋 𝑡()

state of the system. For example, the state
vector include positions and velocities𝑥, 𝑦, 𝑧()
�̇�, �̇�, �̇�()

● : System matrix, defines the interaction𝐴
among state variables.

● Input vector, representing external𝑈 𝑡():
control or influence.

● : Input matrix, maps how inputs affect the𝐵
state variables

● : Derivative of the state vector,�̇� 𝑡()
representing how the systems evolves over
time.

2) Matrix Exponential Solution
The matrix exponential is a pivotal concept in

linear algebra, crucial for solving systems of linear
differential equations in dynamic systems. In your
research paper about optimizing satellite orbit
transfer efficiency, it plays a key role in elucidating
the satellite's state evolution under the linearized
equations of motion while in orbit.

The general solution is
,𝑋 𝑡() = 𝑒 𝐴𝑡()𝑋(0) 𝑋(0) = 𝑋

0
Where:
● : State vector at time.𝑋 𝑡()
● : Initial state vector.𝑋 0()
● : State-transition matrix, which describes𝑒 𝐴𝑡()

the time evolution of the system.

The matrix exponential is defined as an𝑒 𝐴𝑡()

infinite series:
𝑒 𝐴𝑡() = 𝐼 + 𝐴𝑡 + (𝐴𝑡)2/2! + (𝐴𝑡)3/3! +...

where:
● : Identity matrix.𝐼
● : Powers of A scaled by time t. This series𝐴𝑡

always converges, ensuring is𝑒 𝐴𝑡()

well-defined.

If A is diagonalizable, the calculation of is𝑒 𝐴𝑡()

simplified to:

,𝑒 𝐴𝑡() = 𝑉𝑒𝐷𝑡 𝑉−1

where:
● : Matrix of eigenvectors of𝑉 𝐴
● D: Diagonal matrix of eigenvalues of .𝐴
● : Exponential of the diagonal matrix,𝑒𝐷𝑡

computed element-wise as:

,𝑒𝐷𝑡 = 𝑑𝑖𝑎𝑔(𝑒
λ

1
𝑡
, 𝑒

λ
2
𝑡
, .., 𝑒

λ
𝑛
𝑡
)

where are eigenvalues of .λ
𝑖

𝐴

E. Clohessy–Wiltshire (CW) Equations
A fundamental framework for comprehending the

relative movement of two objects in orbit is offered by the
Clohessy–Wiltshire equations. One object(the target)
travels in a circle in this scenario, while the other (the
chaser) may travel in an elliptical or circular orbit. These
formulas provide a preliminary approximation of the
chaser's path as seen from the target's point of view.
During a rendezvous, they are especially helpful in
creating moves that bring the chaser and the target close
together.

1) Linearized Second-Order Equations
The CW Equations are given by:

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

https://statlect.com/matrix-algebra/diagonal-matrix

Where:
● : Relative positions of the deputy

satellite in the radial, tangential, and out-of-plane
directions.

● : Relative velocities of the deputy
satellite.

● : Relative accelerations of the deputy
satellite.

● : Mean motion of the chief satellite,
where:

○ : Gravitational parameter of the
central body.

○ : Semi-major axis of the chief
satellite's orbit.

2) State-Space Conversion
To facilitate numerical computations, the CW

equations are converted into first-order state-space
form:

Where:

● : State vector
containing the relative positions and velocities.

● : State-space system matrix, given by:

Fig. 2 State-Space System matrix
source: Author

This formulation allows the relative motion to be solved
using matrix exponential techniques.

F. Orbit Transfer Optimization
Orbit transfer is one of the most essential concepts in

satellite motion, whereby a satellite is transferred from
one orbit to another. This process generally requires
velocity changes (), which are performed by means of
propulsion maneuvers. It is therefore very important to
optimize such maneuvers in order to minimize fuel
consumption, increase the mission's lifetime, and perform
precise orbit transfers. The theory of orbit transfer is a
matter of understanding how orbits work, calculating the

required for different transfer methods, and
techniques such as matrix diagonalization to speed things
up.

In optimization of orbit transfers, the system matrix A in
the CW framework is written as , where𝐴 = 𝑃𝐷𝑃−1 𝑃
has the eigenvectors of A, and D is a diagonal matrix
made up of its eigenvalues. This transformation splits the
dynamics into a set of independent pieces with each one
corresponding to an eigenvalue.
Using the diagonalized form, the state-transition matrix

is computed as:𝑒 𝐴𝑡()

where is trivial to compute since D is diagonal. This
decoupling allows for efficient exact computation of the
state of the satellite at any time t and design of simple
maneuvers to reach some desired state. The consequence
is a dramatic reduction in the required, making the
transfer between the orbits much more efficient.

 III. IMPLEMENTATION

The implementation in this paper is done with Python,
alongside a set of libraries. The numerical computations
and matrix operations are handled through NumPy library,
while the SGP4 API processes TLE data to compute
positions and velocities of satellites. It depends on the
Requests library to fetch real-time TLE data from
Celestrak and Math for its trigonometric and general
mathematical functions required for orbital calculation.
JSON is used both for storing data in structured format
and for outputting results. With its clear syntax, extended
scientific ecosystem, and painless integration with a lot of
different data sources, Python is an ideal choice for
implementing and reproducing satellite orbit transfer
optimization.
 A. Dataset Description

The dataset that is used for the program are Two-Line
Element (TLE) from a file named “stations.txt”. This file
has data from Celestrak, an online resource about
Earth-orbiting satellites and their orbital elements,
describing the orbit for many satellites and space-related
objects. The file organizes the data in groups of three
lines:

● Line 1: The satellite name
● Line 2: TLE (line 1)
● Line 3: TLE (line 2)

This is the example of entry data inside stations.txt

ISS (ZARYA)
1 25544U 98067A 24366.81307813
.00027763 00000+0 48311-3 0 9996
2 25544 51.6382 56.2039 0006091
28.0496 332.0820 15.50544003489205

The breakdown in the format of the data is described
below:

● Line 1: Provides the name of the satellite (ISS
(ZARYA))

● Line 2: Contains data about satellite’s orbit:
○ 1: Line number in TLE
○ 25544: Satellite catalog number
○ U: Classification

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

https://www.codecogs.com/eqnedit.php?latex=%5Cddot%7Bx%7D%20-%203n%5E2x%20%3D%200%2C%20%5C%5C#0
https://www.codecogs.com/eqnedit.php?latex=%5Cddot%7By%7D%20%2B%20n%5E2y%20%2B%202n%5Cdot%7Bx%7D%20%3D%200%2C%20%5C%5C#0
https://www.codecogs.com/eqnedit.php?latex=%5Cddot%7Bz%7D%20%2B%20n%5E2z%20%3D%200#0
https://www.codecogs.com/eqnedit.php?latex=x%2C%20y%2C%20z#0
https://www.codecogs.com/eqnedit.php?latex=%5Cdot%7Bx%7D%2C%20%5Cdot%7By%7D%2C%20%5Cdot%7Bz%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cddot%7Bx%7D%2C%20%5Cddot%7By%7D%2C%20%5Cddot%7Bz%7D#0
https://www.codecogs.com/eqnedit.php?latex=n%20%3D%20%5Csqrt%7B%5Cfrac%7B%5Cmu%7D%7Ba%5E3%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0
https://www.codecogs.com/eqnedit.php?latex=a#0
https://www.codecogs.com/eqnedit.php?latex=%5Cdot%7BX%7D%20%3D%20AX%2C#0
https://www.codecogs.com/eqnedit.php?latex=X%3D%5Bx%2C%20y%2C%20z%2C%20%5Cdot%7Bx%7D%2C%20%5Cdot%7By%7D%2C%20%5Cdot%7Bz%7D%5D%5ET#0
https://www.codecogs.com/eqnedit.php?latex=A#0
https://www.codecogs.com/eqnedit.php?latex=A%20%3D%5Cbegin%7Bbmatrix%7D%200%20%26%200%20%26%200%20%26%201%20%26%200%20%26%200%20%5C%5C%200%20%26%200%20%26%200%20%26%200%20%26%201%20%26%200%20%5C%5C%200%20%26%200%20%26%200%20%26%200%20%26%200%20%26%201%20%5C%5C%203n%5E2%20%26%200%20%26%200%20%26%200%20%26%202n%20%26%200%20%5C%5C%200%20%26%200%20%26%200%20%26%20-2n%20%26%200%20%26%200%20%5C%5C%200%20%26%200%20%26%20-n%5E2%20%26%200%20%26%200%20%26%200%20%5Cend%7Bbmatrix%7D.#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20v#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20v#0
https://www.codecogs.com/eqnedit.php?latex=e%5E%7B%5Cmathbf%7BA%7Dt%7D%20%3D%20%5Cmathbf%7BV%7D%20e%5E%7B%5Cmathbf%7BD%7Dt%7D%20%5Cmathbf%7BV%7D%5E%7B-1%7D%2C#0
https://www.codecogs.com/eqnedit.php?latex=e%5EDt#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20v#0

○ 98067A: Launch year and piece
identifier

○ 24366.81307813: Epoch time,
representing the time the TLE was
valid.

○ .00027763: Orbital drag coefficient.
○ 00000+0: Placeholder for ballistic

coefficient.
○ 48311-3: Placeholder for higher-order

drag terms.
○ 0: Checksum digit

● Line 3: Contains the actual orbital elements:
○ 2: Line number in TLE
○ 51.6382: Inclination (), the angle of

the orbital plane relative to Earth's
equatorial plane.

○ 56.2039: Right Ascension of the
Ascending Node (RAAN)

○ 0006091: Eccentricity (),
representing the orbit's deviation from
circularity.

○ 28.0496: Argument of Perigee (),
specifying the closest point's location in
the orbit.

○ 332.0820: Mean anomaly (),
describing the satellite's position within
its orbit.

○ 15.50544003: Mean motion (),
indicating the number of orbits per day.

○ 489205: Checksum digit.
TLE data is significant for the program. Specifically,

such information aids in determining a satellite's position
and velocity utilizing the SGP4 model; this then goes a
step further to obtain orbital elements such as the
semi-major axis, eccentricity, inclination, and right
ascension of the ascending node. These orbital elements
are useful in generating the Clohessy–Wiltshire (CW)
system matrix, which describes the motion of the satellite
in a near-circular orbit. Additionally, the TLE data aids in
the proper identification of each satellite, where names
from the dataset are used to label and organize results.
With such clear and accurate data, the program can
calculate and enhance orbital transfers for a number of
satellites effectively.

 B. Program Procedure
 Below is a written procedure of the code with each
corresponding code snippet for the implementation.

1. Retrieving TLE Data for Satellites
The first step is retrieving TLE data for satellites

from stations.txt file. This is accomplished by
utilizes the requests library to fetch the data from
https://celestrak.org/NORAD/elements/stations.txt.
The program extracts the data line by line. Validation
added to ensure that TLE first line starts with “1”
and second line starts with”2”. The data entries are
structured into a list of dictionaries, where each
dictionary consists od satellite’s name and its
corresponding TLE lines.

Below is the source code for the process of
retrieving TLE data:

Fig. 3 Retrieve TLE data algorithm
source: https://github.com/Starath/MakalahAlgeo

2. Converting TLE Data to Orbital Elements
The retrieved TLE data is then proceeds to be

converted into orbital elements. The two TLE lines
that corresponds to each satellite are then parsed
using the SGP4 library, resulting in position () and
velocity () vectors at epoch time for each satellite.
From these vectors, the main orbital parameters are
computed: semi-major axis (), eccentricity (),
inclination (), and Right Ascension of Ascending
Node (RAAN). The argument of perigee (𝜔) and
true anomaly (𝜈) are also computed, completing the
set of orbital elements. These parameters
mathematically describe the orbit of a satellite. The
function also handle errors and will return an empty
dictionary when TLE propagation for any of the
satellites fails, ensuring only valid orbital elements
are passed.

Below is the source code for the process of
converting the TLE data:

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=e#0
https://www.codecogs.com/eqnedit.php?latex=%5Comega#0
https://www.codecogs.com/eqnedit.php?latex=M#0
https://www.codecogs.com/eqnedit.php?latex=n#0
https://celestrak.org/NORAD/elements/stations.txt
https://www.codecogs.com/eqnedit.php?latex=r#0
https://www.codecogs.com/eqnedit.php?latex=v#0
https://www.codecogs.com/eqnedit.php?latex=a#0
https://www.codecogs.com/eqnedit.php?latex=e#0
https://www.codecogs.com/eqnedit.php?latex=i#0

Fig. 4.1 Convert TLE data algorithm
source: https://github.com/Starath/MakalahAlgeo

Fig. 4.2 Convert TLE data algorithm

source: https://github.com/Starath/MakalahAlgeo

3. Construct and Diagonalize the
Clohessy–Wiltshire (CW) System Matrix
The Clohessy–Wiltshire (CW) system matrix

represents the linearized relative motion of a satellite
in a near-circular orbit. Using the
construct_cw_matrix() function, a CW matrix

is created based on the mean notion:

Where is Earth's
gravitational parameter and is the semi-major axis.

Following the construction, the CW system
matrix decomposed, yielding eigenvalues and
eigenvectors such that

𝐴 = 𝑃𝐷𝑃−1

This diagonalization decouples the system
dynamics into independent modes, simplifying the
computation of state corrections for optimizing the
orbit transfer.
Below is the source code for the process of construct
and diagonalize the CW matrix:

Fig. 5 Construct and diagonalize CW matrix
source: https://github.com/Starath/MakalahAlgeo

4. Optimizing the Orbit Transfer
After the construction and diagonalization of the

Clohessy–Wiltshire CW system matrix are
performed, the program optimizes the orbit transfer

of the satellite. the program calculates the minimum
velocity impulse () that the satellite must impart
in order to change from an initial offset state () to
a desired final state () in a given time of flight (

). The process transforms the initial and final
states into modal space using eigenvectors (V). It lets
the initial state roam freely over the time interval
using eigenvalues (Λ). Then, it determines the
required state correction in modal space. This
correction is transformed back to physical space to
obtain the required velocity impulse. Below are the
equations governing these transformations:

The magnitude of the velocity impulse () is
then calculated from the velocity components of the
state correction. This optimized ensures that the
satellite reaches the desired final state efficiently
within the allotted time.
Below is the source code for the process of
optimizing the orbit transfer:

 Fig. 6 Optimize orbit transfer
 source: https://github.com/Starath/MakalahAlgeo

5. Saving Optimization Results
After the program has optimized the orbit

transfers for all satellites, it formats the results and
stores them onto optimized_stations.json file. The file
contains detailed information for each satellite, such
as its name, TLE data, derived orbital elements, mean
motion, and details of the transfer improvement,
including starting and ending states, time of flight,
the calculated speed change (), and the state
adjustment needed. The program uses the json library
to ensure that the results are stored in a neat and
readable JSON format for subsequent data processing
or visualization operations.
Below is the source code for the process of saving the
optimization results:

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

https://www.codecogs.com/eqnedit.php?latex=6%20%5Ctimes%206#0
https://www.codecogs.com/eqnedit.php?latex=A#0
https://www.codecogs.com/eqnedit.php?latex=n%3D%5Csqrt%7B%5Cmu%20%2F%20a%5E3%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu%20%3D%20398600.4418%20km%5E3%2Fs%5E2#0
https://www.codecogs.com/eqnedit.php?latex=a#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20v#0
https://www.codecogs.com/eqnedit.php?latex=X_0#0
https://www.codecogs.com/eqnedit.php?latex=X_f#0
https://www.codecogs.com/eqnedit.php?latex=t_f#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Baligned%7D%20%5Cmathbf%7BX%7D_d%20%26%3D%20V%5E%7B-1%7D%20%5Ccdot%20%5Cmathbf%7BX%7D_0%20%5C%5C%20%5Cmathbf%7BX%7D_%7Bf%2C%5Ctext%7Bfree%7D%7D%20%26%3D%20e%5E%7B%5CLambda%20t_f%7D%20%5Ccdot%20%5Cmathbf%7BX%7D_d%20%5C%5C%20%5CDelta%20%5Cmathbf%7BX%7D_d%20%26%3D%20%5Cmathbf%7BX%7D_f%20-%20%5Cmathbf%7BX%7D_%7Bf%2C%5Ctext%7Bfree%7D%7D%20%5C%5C%20%5CDelta%20%5Cmathbf%7BX%7D%20%26%3D%20V%20%5Ccdot%20%5CDelta%20%5Cmathbf%7BX%7D_d%20%5Cend%7Baligned%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20v#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20v#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20v#0

 Fig. 7 Saving optimization results
 source: https://github.com/Starath/MakalahAlgeo

 IV. EXPERIMENTAL RESULTS

 Here is the results of optimized orbit transfer from each
satellite

Name
Semi-majo
r Axis (km)

Eccen
tricity

Inclina
tion (°)

Delta V
(m/s)

ISS
(ZARY
A)

6796.58
0.001
671

51.648 1.5274

CSS
(TIAN
HE)

6765.1
0.001
021

41.47 1.5301

ISS
(NAUK
A)

6795.69
0.000
982

51.644 1.5275

FREGA
T DEB

7943.6
0.094
076

51.64 1.3954

CSS
(WENT
IAN)

6769.54
0.001
268

41.488 1.5297

CSS
(MENG
TIAN)

6769.54
0.001
268

41.488 1.5297

CYGN
US
NG-21

6795.69
0.000
982

51.644 1.5275

CYSAT- 6648.21 0.001 51.614 1.5396

1 828

YODAK
A

6765.81
0.002
053

51.62 1.5301

1998-0
67XD

6768.12
0.001
608

51.618 1.5299

 Fig. 8 Optimized result data
 source: https://github.com/Starath/MakalahAlgeo

The semi-major axes range from about 6648 km (like

CYSAT-1) to almost 7944 km (FREGAT DEB). This may
indicate that most of the vehicles either operate or have
been deorbited in LEO, while there is a higher, more oval
orbit for one of them. The inclination values go from
41.5° (CSS modules) to approximately 51.6° (ISS
modules), thus showing the selection of rather different
orbital paths for these missions. The overall eccentricities
remain quite small (generally < 0.01), except for the
Fregat Deb fragment, whose eccentricity is close to 0.094,
highlighting its significantly elliptical orbit.

The transfer optimization part of the data shows that all
simulated maneuvers were designed for a 900-second
(15-minute) time of flight. The needed values
usually stay around 1.52 m/s for most LEO targets (like
ISS segments, CSS modules, and visiting vehicles). This
means they need similar low-thrust or short-burn
maneuvers in the same types of orbits. The main
exception is FREGAT DEB, which has a lower of
about 1.40 m/s. This is probably because its higher
starting altitude and orbital shape change the details of the
transfer design. Furthermore, the final “state_correction”
vectors show small positional and velocity offsets, on the
order of fractions of a kilometer and millimeters per
second, to be corrected after the primary
burn—emphasizing that each maneuver is finely tuned to
reduce residual insertion error.

Taken together, these results underscore how mission
design in LEO can converge on similar magnitudes of
maneuver requirements when orbital regimes,
inclinations, and target altitudes are nearly aligned. The
similarity between ISS-related spacecraft and CSS
modules shows that they are designed to have the same
orbital height and angle. This is done to make rendezvous
and docking easier. On the other hand, differences in
detail, like those of FREGAT DEB, show how elliptical
orbits can change the energy needed, even for short
transfers. In general, the data shows that although mission
goals differ, the basic needs and short maneuver
times of about 900 seconds are largely the same for LEO
operations.

 V. CONCLUSION

In this work, it showed how satellite orbit transfers
could be optimized in terms of minimizing the required
speed changes () for accurate maneuvers using matrix
diagonalization. The approach via eigenvalue
decomposition and state-space transformation provided
effective solutions for orbit adjustments for different

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20v#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20v#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20v#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20v#0

satellites with various orbital settings. The results showed
that the satellites having close semi-major axes and
inclinations to each other, like the ones in the ISS group,
had very low values, even down to 1.527 m/s. This
again proves how matrix-based optimization techniques
can lower fuel consumption and hence increase the life
span of a satellite mission.

The limitation of the proposed method is that large
constellations cannot be handled because high
computational power is needed for such conditions. Work
in the future should attempt to adopt parallel processing
techniques and address non-linear changes, thus making it
useful in various mission scenarios. Further, investigating
real-time applications and updating the model to include
dynamic environmental factors such as atmospheric drag
and solar radiation pressure would likely continue to
make it even more accurate and mission-applicable. This
study sets up the basics for effective ways to move in
space, which is important for planning satellite missions
and saving money.

 VI. APPENDIX

the JSON result file and the full source code are in this
github repository below:
https://github.com/Starath/MakalahAlgeo

 VII. ACKNOWLEDGEMENT

The author would like to express his deepest gratitude to
God Almighty who has helped make this paper possible.
The author would also like to thank the lecturer of the
Linear Algebra and Geometry course, Dr. Ir. Rinaldi
Munir M.T., who has been fully dedicated to teaching this
course and helping the author in understanding the
foundation of Linear Algebra and Geometry so that it
greatly helps the author in applying it to this paper.

 REFERENCES

[1] Grainger College of Engineering. (2019). “Eigenvalues and
eigenvectors”.
https://courses.grainger.illinois.edu/cs357/fa2019/references/ref-9-
eigen/. Accessed 1st January 2025.

[2] Munir, Rinaldi. 2023. “Nilai Eigen dan Vektor Eigen (Bagian 1)”.
Nilai Eigen dan Vektor Eigen (Bagian 1). Accessed 1st January
2025.

[3] Munir, Rinaldi. 2023. “Nilai Eigen dan Vektor Eigen (Bagian 2)”.
Nilai Eigen dan Vektor Eigen (Bagian 2). Accessed 1st January
2025.

[4] Weisstein, Eric W. "Matrix Diagonalization." From MathWorld--A
Wolfram Web Resource.

https://mathworld.wolfram.com/MatrixDiagonalization.html.
accessed 1st January 2025.

[5] CelesTrak. (n.d.). Two-Line Element Sets. Retrieved from
https://celestrak.org/NORAD/elements/. Accessed 1st January 2025

[6] Rabah, Rabah & Bergeon, Benoit. (2001). On state space
representation of linear discrete-time systems in Hilbert spaces.
Visnyk Kharkivs’kogo Universytetu. Seriya Matematyka,
Prykladna Matematyka i Mekhanika. 514. Accessed 1st January
2025.

 STATEMENT
Hereby i declare this that this paper i have written is my

own writing, not a reproduction or translation of someone
else’s paper, and not plagiarized.

Bandung, 2 January 2025

Athian Nugraha Muarajuang
13523106

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20v#0
https://github.com/Starath/MakalahAlgeo
https://courses.grainger.illinois.edu/cs357/fa2019/references/ref-9-eigen/
https://courses.grainger.illinois.edu/cs357/fa2019/references/ref-9-eigen/
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-19-Nilai-Eigen-dan-Vektor-Eigen-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-20-Nilai-Eigen-dan-Vektor-Eigen-Bagian2-2023.pdf
https://mathworld.wolfram.com/MatrixDiagonalization.html
https://celestrak.org/NORAD/elements/

